

Friday Live

Privacy-preserving Crypto I

MPC-based election

A small group of CS-523 students decided to elect their student representative. They heard about e-voting and decided to implement e-voting scheme using an SMC protocol.

There are m participants, and n election candidates. Each vote is an n -dimensional one-hot encoded vector with 1 in the position for the selected candidate. The voting outcome is the sum of the vectors.

Example: Suppose there are 4 candidates, so $n = 4$. Then $(0, 0, 1, 0)$ is a vote for the 3rd candidate. The vector $(0, 2, 7, 1)$ could be a result of the election.

MPC-based election

The first scheme which they have seen in the lecture slides was **Garbled Circuits**. Students read that it works well for 2-party computations and decided to extend it to multi-party through “pairwise voting”:

- 1) They form a round table
- 2) Starting clockwise one student is a server and the next one is a client
- 3) One by one they compute the following function: $f(s, v_n)$. Where s is a “current” voting result and v_n is a vote
- 4) s is initialized as v_1

At the end of the procedure the last person will know the result of the voting, and he transfers it to other participants.

Is this mechanism SMC? Justify in terms of *privacy* and *correctness* for different threat models.

MPC-based election

After some discussions they decided to stop inventing a “custom SMC”, and use deployment-ready SMC algorithm in a black-box way (e.g., as SMC based on additive-secret sharing).

- What could be the $f(\cdot)$?
- Does this scheme guarantee that each participant has zero information about other votes?

e.g., is $Pr(v_n | s) = Pr(v_n)$? (assume that prior vote probability is uniformly distributed across candidates)

Privacy leakage of MPC-based election

- 1) What can be done to reduce this privacy leakage?
- 2) Is it possible to completely eliminate it?